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ABSTRACT 

We study the prime varieties of associative Mgebras over infinite fields of 

characteristic p. We prove a few properties of the multilinear components 

of T-prime T-ideals and describe the prime subvarieties of the variety of the 

algebras satisfying all the identities of the algebra M2 (F) and the identity 

xP -~ O. 

Let F be an infinite field of characteristic p, FIX I be the free associative algebra 

over F generated by a countable set X. A T-ideal U of the algebra F<X I is 

called T-prime iff for all T-ideals U1, U2 an inclusion U1 U2 c_C_ U implies one of 

the inclusions U1 C U or U2 C_ U. A T-ideal U is called T-semiprime iff for every 

T-ideal U1 an inclusion U~ C_ U implies U1 C U. A variety of algebras is called 

prime (semiprime) if its ideal of identities is T-prime (semiprime). 

Denote by N(U) the sum of all nilpotent modulo U T-ideals. It is easy to 

prove N(U) is T-semiprime. Indeed, if it is not so, then there exists a polynomial 

g ~ N(U) such that  V 2 C_ N(U),  where V is the T-ideal generated by g. Since 

V 2 is finitely generated as a T-ideal, then V 2 C_ ~N=I Ui, where the T-ideals U~ 

are nilpotent modulo U. It follows from this that  the ideal V is nilpotent modulo 

U, i.e. g E N(U). 
Let S be a T-semiprime T-ideal. If the ideal S is not T-prime, then S = U1NU2 

for some T-ideals U~ ~ S. Choose a T-ideal St maximal, with respect to the 

property: S = $1 N U2. Then we choose a T-ideal $2 maximal with respect 

to the property: S = $1 n $2. The ideals Si are T-semiprime. Indeed, if, for 

example, V 2 _C $1 for some T-ideM V, then (V1S2) 2 ~ S, where V1 = V + $1. 
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Since S is T-semiprime, then VIS2 C_ S and S = V1 n $2. It follows from this 

and the definition of $1 that V c_ $1. It is easy to prove, using this remark and 

transfinite induction, that any T-semiprime T-ideal is equal to the intersection 

of some family of T-prime T-ideals. 

So, the problem of describing the T-prime ideals is very important. In the 

case of characteristic zero the author ([1]) has proved the following Structure 

Theorem: 

THEOREM: For any T-ideal U the ideal N(U)  is nilpotent modulo U. A n y  T-  

semiprime T-ideal is equal to the intersection of  some finite number of  T-prime 

T-ideals. A proper T-ideal U is T-prime iff U is an ideal of  identities of  the 

Grassman hull of  some finite dimensional simple associative superalgebra. 

The problem of describing the prime varieties in the case of characteristic p is 

open nowadays [2]. 

In the first section of the paper we divide the T-ideals into two classes - -  regular 

and irregular - -  and prove a few properties of the multilinear components of the 

regular T-prime T-ideals. In particular, we reduce the study of such T-ideals to 

the study of the two-sided ideals of the group algebra FS(n) (Theorem 1). 

The second section is devoted to the prime subvarieties of the variety generated 

by the algebra of matrices of the second order M2(F). Recently the author has 

described the multilinear components of such varieties (unpublished). The proof 

contains hard straight calculations and is not good to read. In this section we'll 

give, as an example, part of this description. We'll describe the prime subvarieties 

of the variety ~3 of the algebras satisfying all the identities of M2(F) and the 

identity x p = O. 

Let ~1 be the variety of all algebras with trace satisfying all the trace identities 
1 of M2(F) and the identities x p = 0 and x -p-2 = 0, where �9 = x - ~ Tr(x). Denote 

by ~31 the variety of all the ordinary algebras which satisfy all the ordinary 

identities of the variety ~31. Let ~30 be the variety of commutative algebras 

satisfying the identity x p = O. 

The following Theorem is a main result of the section: 

THEOREM 2: I f  char F > 3, then ~ is a proper prime subvariety o[~3 iff ']3 = ~ 

for some i = 0, 1. 

The case p -- 2 is trivial. In this case the variety if/is prime and has no proper 

prime subvarieties. In the case p = 3 the description is reduced to the open 
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problem: Is it true that the Grassman algebra of countable rank G satisfies all 

the identities of the algebra M2(F) ? 

1. Some general properties of  the prime varieties 

Let P be the set of all multilinear polynomials. The set U M P is called the 

multilinear component of the T-ideal U. 

An ideal of identities of an algebra A is denoted by T[A]. 

We start  the section with the following lemma: 

LEMMA 1: I f  U is a proper T-prime T-ideal, then there exists an algebra with 

unit A such that T[A] N P = U M P. 

Proof: It is sufficient to prove that  f[x~=l E U for any polynomial 

f = f ( x l , . . . , x n )  E UN P and j _< n. 

Let h = h ( y b . . . , y m )  E U be a nonzero multilinear polynomial of minimal 

degree, Yi ~ { x l , . . . ,  xn}. The polynomial h can be written in the form 

N 

h = ~-~wiYlhi,  
i=1 

where the wi are words and the hi are polynomials. Without loss of generality 

we may assume wl = 1, wi ~ 1 for i > 1. Consider the polynomial 

N 

g = ~-~f]xj=w, zhi. 
i = l  

It is easy to see the polynomial g belongs to the T-ideal, generated by h. Thus 

g E U. Since f E U and wi r 1 for i > 1, then fix~=w, E U for i > 1. It 

follows from this that  f l~j=lzhl  E U. Since U is T-prime and deg hi < deg h, 

then fl~j=l  E U. This proves the lemma. | 

Now we recall the concepts of algebras with trace and trace identities. 

Let A be any associative algebra with unit over the field F,  R an associative 

and commutative algebra with unit over the same field, C(A) the center of A and 

7c: R --~ C(A) a homomorphism of F-algebras. Put  ar = a~r(r) for a E A, r E R. 

This turns the algebra A into an R-algebra. Let Tr: A -~ R be an arbitrary 

R-linear mapping satisfying the property: Tr(ab) = Tr(ba) for all a, b E A. We 

call the set (A, R, ~r, Tr) an algebra with trace. Sometimes we say simply A is an 
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algebra with trace, having in mind that the algebra R and the mappings ~, Tr 

are given. 

Let X be any countable set and F~ (X} the free associative algebra with unit 

generated by the set X. Define an equivalence on the semigroup with unit 

(X) generated by the set X, putting ul ~ u2 if and only if there exist ele- 

ments v,w �9 (X) such that Ul = vw, u2 = wv. I f u  �9 (X), then we put ~ =  

{v �9 (X)lv ~ u}. Denote by T(X} the free associative and commutative algebra 

with unit generated by all the elements Tr(~), where u �9 (X). 

The algebra F(X) = F~(X) | T(X) is called the free algebra with trace 

generated by the set X. If we identify the algebras F~(X) | 1 and F~(X), 

then we have the inclusions: 

x c_ F(X) c F (Xl c_ 

We also identify the algebras T(X) and 1 | T(X).  Then an arbitrary ele- 

ment f �9 F ( X )  can be written as an F-linear combination of the elements 

u0 Tr (Ul ) . . .  Tr(un), where ui �9 (X), n > 0. We call the elements of this form 

trace monomials and the elements of the algebra F (X )  trace polynomials in the 

variables from X. We also call the polynomials from F (X )  ordinary polynomials. 

Let A be an algebra with trace, f = f ( x b . . . , x n )  �9 F(X).  We say the 

algebra A satisfies a trace identity f = 0 if for arbitrary a l , . . . , a n  �9 A the 

equality f ( a l , . . . ,  an) = 0 is satisfied in A. The ideal 

T[A] = {f  �9 F(X)If = 0 is an identity of A} 

is called the ideal of trace identities of the algebra A. An arbitrary ideal of the 

algebra F ( X  / which is an ideal of trace identities of some algebra, is called a 

:r-ideal. 

It is obvious that  the ideal of trace identities of an arbitrary algebra contains 

the ideal of the ordinary identities of the same algebra. 

A T-ideal F is called :~-prime iff for every T-ideal F1, F2 an inclusion F1F2 _C F 

implies one of the inclusions F1 C_ F or F2 _C F. 

Let U be a proper T-ideal. In [3] it was proved that  T[Mk(F)] N P c_ U for 

some k. The minimal number k with this property we call the matrix type of U. 

Let k be the matrix type of the T-ideal U. Define the trace in the algebra 

Mk(F) in the usual way: Tr (e l j )  --- 5ij.  We call a T-ideal U regular iff there exist 
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an ordinary multilinear polynomial h = h ( x l , . . . ,  xm) ~ U such that the algebra 

Mk(F)  satisfies a trace identity of the form 

(1) g(x l , . .  ., x,~, xm+l) * Tr(xm+l)h(xl , .  . . ,  Xm) = 0 

for some ordinary multilinear polynomial g. 

The condition of irregularity is quite strong. In the case of characteristic 

zero, irregular T-prime T-ideals do not exist. Indeed, if U is a T-prime T- 

ideal, T[Mk(F)] C U, then, using the well-known results of the structure theory 

of relatively free PI-algebras, it is easy to see that T[Mk-i (F)]  c_ U. This 

contradicts the definition of the matrix type of U. 

In the case. of characteristic p the problem of description of the irregular prime 

T-ideals is very difficult, but for T-ideals whose matrix type equals 2 the problem 

can be solved using straightforward calculations. 

LEMMA 2: I f  the matrix type of an irregular T-ideal U equals 2, then 

[x,y,z] E U. 

Proo~ Indeed, define a trace in the algebra M2(F) in the usual way. Then it is 

easy to verify that  the algebra M2 (F) satisfies the following trace identity: 

[[x, y] o t, z] = Wr(t)[x, y, z]. 

It follows from this and the definition of the regularity that  Ix, y, z] E U. This 

proves the lemma. | 

Let G be the Grassman algebra of countable rank over the field F. It is well- 

known that  G satisfies the identity 

(2) [x, y, z] = 0 

and that  the T-ideal T[G] is T-prime. 

It is easy to prove that  any multilinear identity, which is not a consequence 

of (2), implies modulo (2) an identity of the form [ x l , y l ] ' "  [x,~,yn] = 0. In 

particular, it follows from this that  the multilinear components of the T-ideals 

T[G] and {Ix, y, z]} T are equal ({g}T. is the T-ideal generated by g). 

If U is a T-prime T-ideal, Ix, y, z] E U, then applying the remarks formulated 

above we obtain that  either U ~ P = T[ G] N P or U N P = Uo N P ( Uo = { [x, y] } T). 
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So, the problem of describing the multilinear components of the irregular T-prime 

T-ideals, whose matrix type equals 2, is reduced now to the following problem: 

Is it true that the algebra G satisfies all the identities of the algebra M2(F) ? 

If p > 3, then this problem has a negative solution, because the standard 

identity of fourth degree does not follow from (2). In the case p = 3 the problem 

is open. We formulate a more general problem: 

PROBLEM: IS it true that the Grassman algebra of a countable rank over an 

infinite field F of characteristic p >_ 3 satisfies all the identities of the algebra 

M+~2~(F)7 

We note the algebra G satisfies all the multilinear identities of the algebra 

Mp(F). This follows from the proof of the main theorem in [3]. 

Now we start to study the multilinear components of the T-prime T-ideals. 

Define the trace in the algebra Mk (F) in the usual way. 

LEMMA 3: For any proper regular T-prime T-ideal U there exists a T-prime 

T-ideal F such that U M P = F M P and :F[Mk(F)] c_ F, where k is the matrix 

type of U. 

Proo~ Consider a T-ideal I generated by U: 

I = UT(X)  + Tr(U)F(X)  + T[M~.(F)]. 

First of all we prove the equality I M P -- U ~ P. Indeed, if u �9 I A P,  then we 

have an equality modulo T[Mk(F)], 

(3) 

' T (X;  ' F (X) .  Let N be a number such that every where u~,uj E U;tl E wj E 

element of T ( X )  which appears in the formula (3) can be written as a linear com- 

bination of the elements of the form Tr ( a l ) . . .T r ( an ) ,  where ai E ( X ) , n  <_ N.  

Since U is regular, there exist ordinary multilinear polynomials h ( x l , . . . , x m )  

satisfying the properties from the definition of the regularity. Consider the poly- 
i nomials h (~) = h(x~O,. . . ,  x~)), i = 1 . . . . .  N, where the variables xj �9 X do not 

appear in formula (3). The equality (3) implies 

h(1) "" h(N)u = h(1)" h ( N ) ( Z  u t, + F_, Tr(u'j)w ). 
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Applying the identity (1) to the right side of this equality we obtain the multi- 

linear identity of the algebra M k ( F )  

h (1) �9 .. h(N)u ---- H, 

where H is an ordinary polynomial, H C U (the polynomials h (i) "kill" all the 

traces). Hence we obtain h (1) . . .  h(N)u E U. Since U is prime, h i q~ U, then u E 

U. Let F be a maximal T-ideal, satisfying the properties: I C_ F, F N P -- U N P. 

Since U is T-prime then F is T-prime. This proves the lemma. I 

Let/~n be the set. of all multilinear polynomials with trace of degree n depend- 

ing on the variables x l , . . . ,  x~. It follows from the definition of the free algebra 

with trace that  any polynomial f E / 5  can be written in a unique way as an 

F-linear combination of monomials 

m,l_>O, 

which belong t o / 5  and satisfy the properties: 

1. ui ~ 1 for every i > 0; 

2. for all i > 0 the least number j ,  such that  xj  occurs in Ui+l, is greater than 

the least number k, such that  xk occurs in ui. 

Denote by K the subalgebra with unit of the algebra F ( X )  generated by the 

element Tr(1). Let KS~+I  be the group algebra (over K)  of the symmetric 

group of permutations Sn+l acting on the set {0, 1 , . . . ,  n}. We define a K-linear 

mapping An : ~5n -+ KS~+I,  putting 

/ ~n  ( X ~ l  ~ " " Xi s W r ( X j l  " "~ x j t  ) T r ( X k l  " " " x k !  ) . . .  ) = {~ E & - ~ l ,  

where a is a permutation, whose decomposition into the cycles is the following: 

o- = (O, i l , . . . , i ~ ) ( j l , . . . , j t ) ( k l , . . . , k l ) . . .  �9 

We see that  the symbol 0 plays the role of a label, indicating the non-trace part  

of the monomial. It follows from the definition of the free algebra with trace 

that  A,, is an isomorphism of K-modules. If f E Pn ,a  E KS~+I ,  then we put 

fa = )~n1(An(f)a), af = An1(a)~n(f)). 

We call a T-ideal F regular if the T-ideal F M F ( X )  is regular. 
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THEOREM 1: I f  1 ~ is a proper :F-prime regular T-ideal, then for every n the set 

A~(F N / ~ )  is a two-sided ideal of the group algebra KS~+I. 

Proo~ Let k be the matrix type of F N F<X>. Define the trace in the algebra 

Mk (F) in the usual way. Since F is a regular, then for some ordinary multilinear 

polynomials g and h, h ~ F, the algebra Mk(F) satisfies an identity u = 0, where 

/t = g ( x l , . . . , X m + l ) q - T r ( X m + l ) h ( X l , . . . , X m ) .  

By the Proposition from [3] for any permutation a E Sin+2 the algebra Mk(F) sat- 

isfies the identity cru = 0. Let Tj be the transposition (0,j).  If g = 

U~Xm+lVi, then 

Tm+l u :- ~ Wr(Xm+lVi)Ui -}- h(xl , . . . ,  Xm)Xm+l. 

Let f E F r cr E S~+I. We prove el ,  f a  E F [q P~. Indeed, it is sufficient 

to prove this inclusion for cr -- Tj,j ---- 0, 1 , . . . ,  m + 1. Substituting xi -- y~ into 

the identities u = 0 and Tm+lU = 0, where y~ C X \ { X l , . . . ,  xn}, we obtain the 

identities of the algebra Mk(F): 

U~Ym+lV~ q- Wr(ym+l)h(yl,..., Ym) = O, 

+ h(U , . . .  , = O. 

Using these identities and straightforward calculations, it is not difficult to prove 

the identities 
u~flx~=~v: : h ( y l , . . . ,  ym)(fTj), 

(it is sufficient to prove the formulas in the case when f is a monomial). Since 

f E F, then the left sides of both formulas belong to F. It follows from this 

that  h ( y l , . . . , y m ) ( f T j ) ,  ( f r j )h(y l , . . . ,Ym)  E F. Hence we obtain f r j , f r j  C F, 

because F is T-prime and h ~ F. This proves the theorem. I 

3. P r i m e  subvar ie t i e s  o f  

In this section p r 2. 

Let A be an algebra with trace, and let L be the set of all elements of A with 

trace equal to 0. The set L is a Lie subalgebra of Lie algebra A(-).  We say 
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the algebra A satisfies a weak identity f ( Y l , . . . , Y n )  = 0, where f �9 F(X)  iff 

f ( a l , . . . , a n )  = 0 in A for all ai �9 L. 

Let F be a T-ideal. Denote by F t the ideal of weak identities of the algebra 

F ( X ) / F .  If F contains the ideal of trace identities of the algebra M2(F), then it 

is obvious that  f ( x l , . . . ,  x n )  �9 F '  iff 

f (Xl , . - . ,Xn)  �9 r ,  

1 Wr(xi)" It is also obvious that F is the largest T-ideal contained where 5i = x i  - 

in F ~. It follows from this that F~ = F~ iff F1 = F2. 

Now we prove a few weak identities of the algebra M2(F). 

First of all M2(F) satisfies a full linearization of the Cayley-Hamilton identity 

X 2 ( x ,  y )  = 0, where 

X 2 ( x , y )  = x o y - x W~(y) - y Wr(x) + Wr(x)Wr(y)  - Wr(xy) ,  

which implies the following weak identity: 

(4) Ix o y,  z] = 0 

Using this identity we have 

[x, y,  z] = Ix, y ] z  - z [x ,  y] = 2 x y z  - (x  o y ) z  - 2 z x y  + z ( x  o y )  

= 2 x y z .  2 x z y  - 2 ( x  o z ) y  = 2 x ( y  o z )  - 2 y ( x  o z )  = 2[x,  y ] z  + 2 ( x z y  - y z x ) .  

Hence we obtain the following weak identities: 

(5) Ix, y,  z] = 2 x ( y  o z)  - 2 y ( x  o z) ,  

1 ix, y] o z .  (6) x z y  - y z x  = - 

Put r2 = ~[M2(F)]; r0 is the T-ideal generated by the polynomials Ix, y] and 

x p, F1 is the T-ideal generated by F2 and the polynomials x p and ~p-2, where 

~ =  x -  ~ Wr(x). 

LEMMA 4: Let F be a p r o p e r  T-prime T - i d e a l ,  F2 C_ F, F N P r Fo N P. Assume 

t h e  a l g e b r a  A = F ( X )  / F  s a t i s f i e s  a w e a k  i d e n t i t y  

(7) h (  x l ,  . . . , x i - 1 ,  [x~, y], x i +  l ,  . . . , x n  ) = O, 
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for some  i, where  h is an ord inary  po l ynomia l  linear wi th  respect  to xi .  T h e n  

h E F  I. 

Proof'. Assume h ~ F'. Substi tuting into (7) x; = [y~, [z, t]] and applying 

t~r the result the identities (5) and (7), we obtain the following weak identity: 

h([z, t]  o p) -- 0 (remark tha t  [xi,y] = 2pi([z,t] o y) - 2[z,t](y~ o y) ). Since F 

is T-prime, then it follows from this tha t  the algebra A satisfies a weak identi ty 

[z, t] o y = 0. Then A satisfies the trace identity 

(8) [z, t] o y - [z, t] Tr (y )  = 0. 

Subst i tut ing t = t 2 into this identity and applying (8), we obtain 

o = ([z, t, t] + 2t[z, t]) o y - ([z, t, t] + 2t[z, t]) T~(y)  

---- 2(t[z, t]y + yt[z, t] - t[z, t] Tr(y)) -- 2[y, t][z, t]. 

Linearizing the last identity, we get an identity 

(9) [y, u][z, v] = - [y ,  v][z, u], 

which implies an identity 

(10) [[y, u], [z, v]] = 0. 

Indeed, using (9), we obtain 

[y, u] [z, v] = - [ y ,  v] [z, u] = - I v ,  y][~, z] = Iv, z][y, ~] = [z, ~] [y, ~]. 

Substi tut ing into (8) z = y, t -- u, y = [z, v] we obtain the identity 

-[y, u] o [z, v] = 0. 

It follows from this and (10) tha t  [x,u][z,v] C F. Since F is :T-prime, then  

[x, u] E F. Since F is proper, then F N P -- Fo N P. This proves the lemma. | 

Let  D be any subspace of F ( X ) ,  and let f = f ( x l , . . . ,  x,~) be a multil inear 

polynomial.  We say f is symmetric  modulo D if 

f ( X l , . . . ,  x,~) - f(x~(1) . . . .  , x~(~)) E D 

for all permutat ions  c~ E Sn. 
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LEMMA 5: Let F be a proper f -p r ime  T-ideal, W - T-ideal, F2 C_ W C_ F, FMP 

Fo n P. I f  f is an ordinary multilinear polynomial of minimal degree from the 

set F t \ W t, then f is symmetric modulo W ~. 

Proof." Put  g = f ( x l , x 2 , . . . , x n )  - f ( x ~ ( 1 ) , . . . ,  xo(n)). It is sufficient to prove 

that  g C W ~, where a is a cycle of length 2. Without loss of generality we may 

assume a = (n - 1, n). We prove that g can be written modulo W t in the form 

g ~- h ( x x , . . . ,  Xn-2, [Xn--X,Xn]) 

for some ordinary multilinear polynomial h ( x l , . . ,  x~- l ) .  Indeed, using the iden- 

ti ty (4), the polynomial g can be written modulo W ~ as a linear combination of 

polynomials of the form ux~_lVX~W - ux~vxn_lw,  where v is a word of length 

_< 1. Applying the identity (6) to this polynomial, we obtain that  g can be writ- 

ten in the required form. Since g E F t, then by Lemma 4, h E F t. It follows from 

this that  h, g E W t, because degh <degf .  This proves the lemma. I 

Now we start  to study the T-ideals containing F2 and a polynomial x p. 

LEMMA 6: Let F be a T-ideal, F2 C F. Assume the ideal F t contains a polynomial 

x ~, where 1 < n _< p, n r p - 2. Then [z, y]x ~-1 C F t for all x, y, z C X .  

Proo~ Since an identity 

n--1 
(11) E xiyxn- l - - i  = 0 

i=-0 

is equivalent to a full linearization of the identity x ~ -- 0, then (11) is an identity 

modulo F'. Using the weak identity [x 2, y] = 0, which follows from (4), the left 

side of (11) is equal modulo F t to a polynomial 

g(y, x) = [(n § 1)/2]yx ~-1 § [n/2]xyx n-2 

([r] is the integer part of r). 

Consider the weak identity zg(y, x ) -  yg(z, x) = 0. The left side of this identity 

is equal modulo (6) to a polynomial h(y, x)[y=[z,y], where 

h(y, x) = [(n + 1)/2]yx n-1 - l[n/2](x o y)x n-2. 

It follows from this that  

0 = ( �89 § h)ly=t ,y] = Z] xn-1, 
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where ~ = �89 I t  is easy to verify ~ r 0 in F i fn  < p, n r p - 2 .  

This proves the lemma. | 

By applying Lemma 6 twice we get the following corollary: 

COROLLARY: Let F be a T-prime :F-ideal, F2 C_ F, x p E F. Then F1 q F. 

LEMMA 7: The T-ideal F1 contains all the polynomials of the form 

X U l X Z t  2 �9 . .  ~ t p _ 3 ~  , 

where �9 = x - �89 Tr(x), ui ~ ~[X]. 

Proof'. I t  is sufficient to prove the identities h~ = 0 modulo F, where 

hi = ~Ul . . .  5ui~ p-2-i  -- 0 

for i -- 0 , . . . p  - 2. We prove these identities by induction on i. The base of 

induction (i = 0) is obvious. Assume hi E F1. 

Substituting x -- x + ui+l into the identity h i s  -- 0 and, taking a homogeneous 

part  of degree p - 2 with respect to x, we obtain, using (4), an identity 

[(p - 1 - i ) / 2 ] h i + l  + w = o ,  

where w is some linear combination of polynomials of the form 

~ u ~ . . .  ~ u ~ p  - 2 - i ,  

which belong to F1 by the inductive hypothesis. This proves the lemma. | 

A polynomial f ( x , . . . )  is called unitary with respect to x if f ( x  + 1 , . . . )  = 

f ( x , . . . )  in F(X} .  

COROLLARY: I f  an ordinary polynomial f is homogeneous and unitary with 

respect to x and deg~ f _> p - 2, then f E F1. 

Proo~ Indeed, since f is unitary with respect to x, then 

f ( x ,  . . . ) : f ( ~ ,  . . . ) .  

The left side of this equality belongs to F1 by Lemma 7. This proves the corollary. 

I 



Vol. 96, 1996 PRIME VARIETIES 353 

LEMMA 8: Let  F be a proper T-prime T-ideal, F1 C_ F. I f F  ~ F1, then Fo C F. 

Proo f  Indeed, let h E F ~ \  F~ be homogeneous with respect to every variable 

and of minimal degree. Since F~ contains the Cayley-Hamilton polynomial 

x 2 ( x ,  y )  = x o y - x T (y) - y W (x) + Tr (x )  - T r ( x y )  

and the polynomial Tr(x), every polynomial is equal modulo F~ to some ordinary 

polynomial. So, we may assume h is ordinary. By the Corollary of Lemma 7 

deg=h < p for every variable x. Then the identity h = 0 is equivalent to its full 

linearization. It follows from this that  a full linearization of the polynomial h 

does not belong to F~ and we may assume h -- h(Xl , . . .  ,x~) is multilinear. By 

Lemma 5, h is symmetric modulo F t. 

Put  m =min(n,  p - 2) and make the following substitution into the polynomial 

h: xl -- Xl for i _< m. We denote the result of the substitution by g. Since h is 

symmetric modulo F~, a multilinear component of the polynomial 

is equal to a polynomial m!h modulo F t. It follows from this 

(12) g ~ F~ 

because m! ~ 0 in F. 

I f m  < p - 2 ,  then n = m, g -- c~x n for some a C F , a  ~ 0. Hence, by Lemma 6, 

we have an inclusion [z, y]x "-1  E F', which implies an inclusion F0 C F, because 

yn-1 ~ F' and F is a f -p r ime  f-ideal.  

If m = p - 2, then by Lemma 7, g C F t. This contradicts the condition (12). 

This proves the lemma. | 

LEMMA 9: T-ideal FI is a T-prime. 

P r o o f  In the case p -- 3 the lemma is trivial. Assume p > 3. 

If the conclusion of the lemma is not t r ue  then by Lemma 8 every f -p r ime  

T-ideal containing FI contains F0. It follows from this that  

(13) F~ C_ F1 

for some n, because F0 is a finitely generated :F-ideal. This can be proven using 

the methods from the introduction of the paper. 
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Let F be the :F-ideal generated by F2 and the polynomial xC Applying Lemma 

6 and (13), we have an inclusion Fo N C_ F for some N. It follows from this that  

the algebra 

A = F ( X ) / F  

satisfies an identity of Lie solvability of some degree and the identity x p = O. 

Linearizing the identity x p = 0 we get the identity q = 0, where 

q = E [Xp, Xo(1) , . . . ,xo(v_l)] .  

It is evident that  the identity q = 0 is equivalent to the Engel identity [x, y , . . . ,  y] 

= 0 of degree p. Then by the Theorem of Higgins the algebra A satisfies the 

identity of Lie nilpotency 

[x l , . . . , xk]  = 0 

for some k. Since this identity is multilinear, then 

(14) [x , , . . . ,xk]  e W, 

where W is the :F-ideal generated by all the multilinear polynomials from F2 and 

the polynomial q. 

Now it is sufficient to prove that the inclusion (14) is not true for every k. 

Actually, the proof of this can be deduced from the paper of Razmyslov [4]. 

The point is that the conclusion of Theorem 5 from [4] is true not only for the 

polynomial 

"/('~ - 1 ) . - .  ( 7  - P + 1).  

It is also true for the polynomial E(~) -- ~ - 2 (the proof is the same). So, we 

have the conclusion: If V is the verbal ideal corresponding to the bilinear form 

rE, then q E V and 

Ix1, . . . ,  r y 

for every k. 

It remains to show that V contains all the multilinear polynomials from F2. 

Since every multilinear trace identity of M2 (F) follows from the Cayley-Hamilton 

identity of degree 2 ([3]), then it is sufficient to prove the inclusion X2 (x 1, x2) c V. 

By the definition of V we need to verify the equalities in F: 

rE(X2 (Xl, x2) , u)I~f=2 : 0 



Vol. 96, 1996 PRIME VARIETIES 355 

for all trace monomials u depending on xl ,  x2. The left sides of these equalities 

are integers and the equalities are true in the case of characteristic 0 ([4]), so 

they are true in F.  This proves the lemma. I 

Now we can prove the main theorem: 

THEOREM 2: I f  char F > 3, then ~3 is a proper prime subvariety of~3 iff~3 = ~3~ 

for some i = 0, 1. 

Proo~ Let Ui be the ideal of identities of the variety ~ i ,  U a proper T-prime 

T-ideal, x p E U, T[M2(F)] C_ U. By Lemma 3, corollary of Lemma 6 and Lemma 

8 we have an equality U n P = Fi M P for some i -- 0, 1. If this equality is true 

for i = 0, then obviously U = U0. 

Assume UMP = F1NP,  U r U1. Let f E U \ U1 be homogeneous with respect 

to every variable and of minimal degree. If degx f = n, then the polynomial f 

can be writ ten in the form 
n 

f = ~ xkfk, 
i=O 

where the polynomials fk are homogeneous and unitary with respect to x, 

degx fk = n - k. Let m be the minimal number for which Xmfm ~ [/1. Since 

x p E U1, then m < p. 

Put  hi = [xil, xi2] o [xi3, xi4], where i = 1 , . . . ,  m, xlj E X, x~j ~ xks for (i, j )  

(k, s); the polynomial f does not depend on xij. Substitute x = x + hi + . . .  + hm 

into the polynomial f and take the homogeneous component of degree n -  m with 

respect to x and linear with respect to every variable xij. Since the polynomials 

hi are central polynomials of M2(F), the result of this operation is equal modulo 

T[M2(F)] to a polynomial re!h1.., hmfm. I t  follows from this that  either hi E U 

or m - -  0. If hi E U, then U M P  r F 1 M P .  If  m =  0, then by the Corollary 

of Lemma 7, n --degxfm < p - 2 and the identity f -- 0 is equivalent to its full 

linearization. Since a full linearization of the polynomial f belongs to U1, then 

f E U1. We have obtained a contradiction. This proves the theorem. I 
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